Meccanica quantistica: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Etichetta: Annullato |
m Annullata la modifica di FrescoBot (discussione), riportata alla versione precedente di Francopera Etichetta: Rollback |
||
Riga 5:
Come caratteristica fondamentale, la meccanica quantistica descrive la radiazione<ref name=einsteineuristico>{{cita pubblicazione|autore=A. Einstein|titolo="Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (Su un punto di vista euristico riguardo alla produzione e alla trasformazione della luce)|rivista=[[Annalen der Physik]]|volume=17|anno=1905|pp=132-148|url=http://www.zbp.univie.ac.at/dokumente/einstein1.pdf|lingua=de|accesso=30 gennaio 2012|dataarchivio=22 agosto 2014|urlarchivio=https://web.archive.org/web/20140822215426/http://www.zbp.univie.ac.at/dokumente/einstein1.pdf|urlmorto=sì}}</ref> e la materia<ref>{{cita libro|autore=Louis de Broglie|titolo="Recherches sur la théorie des quanta"|anno=1924|lingua=fr}}</ref> sia come fenomeni [[Onda|ondulatori]] che come entità particellari, al contrario della [[meccanica classica]], che descrive la luce solamente come un'[[onda]] e, ad esempio, l'[[elettrone]] solo come una [[particella (fisica)|particella]]. Questa inaspettata e controintuitiva proprietà della realtà fisica, chiamata [[dualismo onda-particella]],<ref>{{cita libro|titolo="Quantum Mechanics: An Introduction"|url=https://archive.org/details/quantummechanics00grei_281|autore=Walter Greiner|editore=Springer|anno=2001|isbn=3-540-67458-6|p=[https://archive.org/details/quantummechanics00grei_281/page/n52 29]|lingua=en}}</ref> è la principale ragione del fallimento delle teorie sviluppate fino al [[XIX secolo]] nella descrizione degli atomi e delle molecole. La relazione tra natura ondulatoria e corpuscolare è enunciata nel [[principio di complementarità]] e formalizzata nel [[principio di indeterminazione di Heisenberg]].<ref>{{cita pubblicazione|autore=W. Heisenberg |anno=1930 |titolo="Physikalische Prinzipien der Quantentheorie" |editore=Hirzel|lingua=de}}</ref>
Esistono numerosi formalismi matematici equivalenti della teoria, come la [[meccanica ondulatoria]] e la [[meccanica delle matrici]]; al contrario, ne esistono numerose e discordanti [[Interpretazione della meccanica quantistica|interpretazioni]] riguardo all'essenza ultima del cosmo e della natura, che hanno dato vita a un dibattito tuttora aperto nell'ambito della [[filosofia della scienza]].
La meccanica quantistica rappresenta, assieme alla [[teoria della relatività]], uno spartiacque rispetto alla [[fisica classica]], portando alla nascita della [[fisica moderna]]. Attraverso la [[teoria quantistica dei campi]], generalizzazione della formulazione originale che include il principio di [[relatività ristretta]], essa è a fondamento di molte altre branche della fisica, come la [[fisica atomica]], la [[fisica della materia condensata]], la [[fisica nucleare]], la [[fisica delle particelle]], la [[chimica quantistica]].
Riga 15:
=== Crisi della fisica classica e ricerca di una nuova teoria ===
[[File:Photoelectric effect in a solid - diagram.svg|alt=|miniatura|[[Effetto fotoelettrico]]: una piastra di metallo irradiata di onde elettromagnetiche di lunghezza d'onda opportuna, emette elettroni.]]
Gli [[atomo|atomi]] furono riconosciuti da [[John Dalton]] nel 1803 come i costituenti fondamentali delle [[Molecola|molecole]] e di tutta la materia.<ref>{{cita web|url=http://www.universetoday.com/38169/john-daltons-atomic-model/|titolo=John Dalton's Atomic Model|accesso=20 settembre 2012|lingua=en}}</ref> Nel 1869 la [[tavola periodica degli elementi]] permise di raggruppare gli atomi secondo le loro proprietà chimiche e questo consentì di scoprire leggi di carattere periodico, come la [[regola dell'ottetto]], la cui origine era ignota.<ref>{{cita web|url=http://www.wou.edu/las/physci/ch412/perhist.htm|titolo=A BRIEF HISTORY OF THE DEVELOPMENT OF PERIODIC TABLE|accesso=20 settembre 2012|lingua=en}}</ref> Gli studi di [[Amedeo Avogadro|Avogadro]], [[Jean Baptiste Dumas|Dumas]] e Gauden dimostrarono che gli atomi si compongono fra loro a formare le molecole, strutturandosi e combinandosi secondo [[Legge|leggi]] di carattere geometrico. Tutte queste nuove scoperte non chiarivano i motivi per cui gli elementi e le molecole si formassero secondo queste leggi regolari e periodiche.
[[File:Spectral_lines_of_the_hydrogen_atom.svg|thumb|[[Spettro dell'atomo di idrogeno]], di tipo discreto o a linee, segno evidente di quantizzazione dell'energia]]
Riga 52:
dove <math>h</math> è la [[costante di Planck]] e <math>p</math> la quantità di moto. In questo modo la legge di quantizzazione imposta da Bohr poteva essere interpretata semplicemente come la condizione di onde stazionarie, equivalenti alle onde che si sviluppano sulla corda vibrante di un violino.
=== Sviluppo della meccanica quantistica
Sulla base di questi risultati, nel 1925-1926 [[Werner Karl Heisenberg|Werner Heisenberg]] e [[Erwin Schrödinger]] svilupparono rispettivamente la [[meccanica delle matrici]] e la [[meccanica ondulatoria]], le prime due formulazioni della meccanica quantistica, che, pur differenti, portano agli stessi risultati. L'[[equazione di Schrödinger]] in particolare è simile a [[Equazione delle onde|quella delle onde]] e le sue soluzioni stazionarie rappresentano i possibili stati delle particelle e quindi anche degli elettroni nell'atomo di idrogeno. La natura di queste onde fu immediato oggetto di grande dibattito, che si protrae in una certa misura fino ai giorni nostri. Nella seconda metà degli anni venti la teoria fu formalizzata, con l'adozione di postulati fondamentali, da [[Paul Dirac]], [[John von Neumann]] e [[Hermann Weyl]].
Una rappresentazione ancora differente, ma che porta agli stessi risultati delle precedenti, denominata [[integrale sui cammini]], fu sviluppata nel 1948 da [[Richard Feynman]]: una particella quantistica percorre tutte le possibili traiettorie durante il suo moto e i vari contributi forniti da tutti i cammini interferiscono fra loro a generare il comportamento più probabile osservato.
== Concetti base ==
Riga 71:
Agli inizi del XX secolo alcune incongruenze teorico-sperimentali misero in crisi la concezione puramente ondulatoria della radiazione elettromagnetica, portando alla teoria, avanzata da Einstein sulla base dei primi lavori di Max Planck, nella quale fu reintrodotta in una certa misura la natura corpuscolare della luce, considerata come composta da [[fotone|fotoni]] che trasportano quantità discrete dell'energia totale dell'onda elettromagnetica. I fotoni rappresentano quindi le particelle corrispondenti alle eccitazioni elementari del campo elettromagnetico; in altri termini i campi elettrici e magnetici possono essere pensati come costituiti da particelle, ciascuna delle quali trasporta una frazione dell'energia totale del campo elettromagnetico.<ref>{{cita web|url=https://www.treccani.it/enciclopedia/fotone/|titolo=fotone|accesso=7/11/2023|lingua=it}}</ref>
Successivamente Louis de Broglie avanzò l'[[Ipotesi di de Broglie|ipotesi]] che la natura della materia e della radiazione non dovesse essere pensata solo in termini esclusivi ''o'' di un'onda ''o'' di una particella, ma che le due entità sono al tempo stesso ''sia'' un corpuscolo ''sia'' un'onda. A ogni corpo materiale viene associata una nuova [[lunghezza d'onda]], che, se di valore piccolissimo e difficilmente apprezzabile per i valori di massa del mondo macroscopico, assume importanza fondamentale per l'interpretazione dei fenomeni alla scala atomica e subatomica. La teoria di De Broglie fu confermata dalla scoperta della diffrazione dell'elettrone osservata nell'[[esperimento di Davisson e Germer]] del 1927.<ref>{{cita web|url=http://library.thinkquest.org/28383/nowe_teksty/htmla/
===Principio di complementarità===
Riga 92:
dove <math>\Delta x</math> è l'incertezza sulla misura della posizione e <math>\Delta p</math> è quella sulla [[quantità di moto]] <math>p = m v</math>. Il limite inferiore del prodotto delle incertezze è quindi proporzionale alla [[costante di Planck]] <math>h</math>.
Heisenberg osservò che per conoscere la posizione di un elettrone, questo dovrà essere illuminato da un fotone. Più corta sarà la lunghezza d'onda del fotone, maggiore sarà la precisione con cui la posizione dell'elettrone è misurata.<ref>{{cita pubblicazione|autore=Hilgevoord, Jan and Uffink, Jos|titolo=The Uncertainty Principle|rivista=The Stanford Encyclopedia of Philosophy|editore=Edward N. Zalta|url=http://plato.stanford.edu/archives/sum2012/entries/qt-uncertainty/|anno=2012|lingua=en}}</ref> Le comuni onde marine non sono disturbate, nella loro propagazione, dalla presenza di piccoli oggetti; al contrario, oggetti grandi almeno quanto la lunghezza d'onda disturbano e spezzano i fronti dell'onda e tali disturbi permettono di individuare la presenza dell'ostacolo che li ha generati. In ambito quantistico, tuttavia, a basse lunghezze d'onda il fotone trasporterà un'energia sempre maggiore, che assorbita dall'elettrone ne perturberà sempre di più la velocità, rendendo impossibile stabilirne il valore contemporaneamente alla posizione. Al contrario, un fotone ad alta lunghezza d'onda perturberà poco la velocità dell'elettrone, ma non sarà in grado di determinare con precisione la sua posizione.
=== Limite classico della meccanica quantistica ===
|