Factorial moment generating function: Difference between revisions

Content deleted Content added
Adjustments, links added
Line 1:
In [[probability theory]] and [[statistics]], the '''factorial moment generating function''' of the [[probability distribution]] of a [[real number|real-valued]] [[random variable]] ''X'' is defined as
:<math>M_X(t)=\operatorname{E}\bigl[t^{X}\bigr], \quad t \in \mathbb{R},</math>
 
for all [[complex number]]s ''t'' for which this [[expected value]] exists. This is the case at least for all ''t'' on the [[unit circle]] <math>|t|=1</math>, see [[characteristic function (probability theory)|characteristic function]]. If&nbsp;''X'' is a discrete random variable taking values only in the set {0,1, ...} of non-negative [[integer|integers]], then <math>M_X</math> is also called [[probability-generating function]] of ''X'' and <math>M_X(t)</math> is well-defined at least for all ''t'' on the [[closed set|closed]] [[unit disk]] <math>|t|\le1</math>.
:<math>M_X(t)=\operatorname{E}\bigl[t^{X}\bigr], \quad t \in \mathbb{R},</math>
 
wherever this expectation exists. The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].
 
Provided the factorial moment generating function exists in an interval around ''t''&nbsp;=&nbsp;1, the ''n''th factorial moment is given by
 
wherever this expectation exists. The factorial moment generating function generates the [[factorial moment]]s of the [[probability distribution]].
Provided the factorial moment generating function<math>M_X</math> exists in ana [[neighbourhood interval(mathematics)|neighbourhood]] aroundof ''t''&nbsp;=&nbsp;1, the ''n''th factorial moment is given by
:<math>\operatorname{E}[(X)_n]=M_X^{(n)}(1)=\left.\frac{\mathrm{d}^n}{\mathrm{d}t^n}\right|_{t=1} M_X(t),</math>
 
where the [[Pochhammer symbol]] (''x'')<sub>''n''</sub> is the [[falling factorial]]
 
:<math>(x)_n = x(x-1)(x-2)\cdots(x-n+1).\,</math>
 
(Confusingly, some mathematicians, especially in the field of [[special function]]s, use the same notation to represent the [[rising factorial]].)
 
==Example==
Suppose ''X'' has a [[Poisson distribution]] with [[expected value]] &lambda;, then its factorial moment generating function is
:<math>M_X(t)
 
:<math>M_X(t) = \sum_{k=0}^\infty \frac{(t\lambda)^k e^\underbrace{-\lambdaoperatorname{P}(X=k)}_{k!} = e\,\lambda^ke^{-\lambda(1-t)},\qquad t\in\mathbb{R/k!},</math>
=e^{-\lambda}\sum_{k=0}^\infty \frac{(t\lambda)^k}{k!} = e^{\lambda(t-1)},\qquad t\in\mathbb{C},
 
</math>
(use the [[Exponential_function#Formal_definition|definition of the exponential function]]) and thus we have
 
:<math>\operatorname{E}[(X)_n]=\lambda^n.</math>
 
Line 28 ⟶ 23:
* [[Moment-generating function]]
* [[Cumulant-generating function]]
 
 
[[Category:Probability theory]]