Vetro di spin: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m clean up
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti.
Riga 2:
In [[fisica della materia condensata]], un '''vetro di spin''' è un [[magnete]] che può mostrare in modo casuale proprietà sia [[Ferromagnetismo|ferromagnetiche]] che [[Antiferromagnetismo|antiferromagnetiche]] a causa della distribuzione probabilistica degli elementi interni che producono gli effetti magnetici ([[spin]]).
 
L'orientamento interno degli spin, la cui somma [[Vettore (matematica)|vettoriale]] dà l'effetto macroscopico, è di tipo [[Processo stocastico|stocastico]] e varia con la [[temperatura]]. Inoltre, poiché convivono sia interazioni ferromagnetiche (per cui spin vicini tendono ad orientarsi nello stesso modo) e antiferromagnetiche (per cui spin vicini tendono ad orientarsi in modo opposto), alcuni spin si trovano ad oscillare tra le due possibilità, rendendo la configurazione interna [[Frustrazione geometrica|frustrata]]<ref>{{Cita web|url=https://www.treccani.it/enciclopedia/vetri-di-spin_(Enciclopedia-Italiana)|titolo=VETRI DI SPIN in "Enciclopedia Italiana"|lingua=it|accesso=13 dicembre 2021}}</ref> e il raggiungimento di un equilibrio interno problematico.
 
Tale struttura interna irregolare dell'orientamento degli spin è analoga a quella delle posizioni degli atomi in un [[solido amorfo]], come è il vetro e da cui viene il nome. Come per il vetro, che solidificando non raggiunge una [[Cristallo|struttura cristallina]] ordinata, anche i vetri di spin mutano lentamente il loro stato interno, con velocità che decelerano con il passare del tempo di modo che le strutture interne si possono considerare [[Metastabilità|metastabili]].<ref>{{Cita web|url=https://www.treccani.it/enciclopedia/sistemi-complessi-fisica-dei_(Enciclopedia-del-Novecento)|titolo=Sistemi complessi, fisica dei in "Enciclopedia del Novecento"|lingua=it|accesso=13 dicembre 2021}}</ref>
Riga 46:
Modelli più realistici di vetri di spin con interazioni frustrate a corto raggio e disordine, come il modello gaussiano in cui le interazioni tra spin primi vicini segue una distribuzione gaussiana, sono stati studiati approfonditamente, specialmente usando [[metodo monte carlo|simulazioni di tipo Monte Carlo]].
 
Oltre alla sua rilevanza nella fisica della materia condensata, la teoria dei vetri di spin ha acquisito un forte carattere interdisciplinare, con applicazioni alle reti neurali, [[biologia teorica]], [[econofisica]] e altri campi.
 
== Note ==