Regime ipersonico: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti.
Garak (discussione | contributi)
Riga 25:
La descrizione dei flussi aerodinamici si basa su un certo tipo di parametri, detti [[gruppo adimensionale|gruppi adimensionali]], che permettono di semplificare e ridurre il numero di casi possibili da analizzare. Nel caso di flussi transonici, il [[numero di Mach]] e il [[numero di Reynolds]] ne permettono un'agevole classificazione.
 
Ovviamente ancheAnche il regime ipersonico richiede tali parametri: innanzitutto, l'equazione che governa l'angolo dell'[[Onda d'urto (fluidodinamica)|onda d'urto]] tende a diventare indipendente dal numero di Mach dai 10 Mach in avanti; in secondo luogo, la formazione di intense onde d'urto attorno al corpo in volo indica che il numero di Reynolds diviene meno rilevante nella descrizione dello [[strato limite]] del corpo (benché resti comunque importante); infine, le elevate temperature del regime ipersonico segnalano l'importanza degli effetti dei [[gas|gas reali]]. Per quest'ultimo motivo, lo studio del regime ipersonico è spesso denominato "''aerotermodinamica''".
 
L'introduzione dei gas reali richiede un numero superiore di variabili necessarie alla descrizione dello stato del gas: mentre un gas stazionario è caratterizzato da tre parametri (la [[pressione]], la [[temperatura]] e il [[volume]]) e un gas in movimento da quattro (i tre precedenti più la [[velocità]]), un gas ada elevate temperature e in [[equilibrio chimico]] richiede delle equazioni di stato per ogni suo componente, mentre un gas non in equilibrio è descritto da queste equazioni se si aggiunge un'ulteriore variabile, cioè il tempo. Tutto questo significa che per descrivere un flusso non all'equilibrio in ogni istante temporale servono tra le 10 e le 100 variabili; inoltre, si deve ricordare che un flusso ipersonico rarefatto (solitamente caratterizzato da un [[numero di Knudsen]] superiore a uno) non segue le [[equazioni di Navier-Stokes]].
 
I regimi ipersonici vengono solitamente classificati in base alla loro energia totale, espressa come [[entalpia]] totale (in MJ/kg), pressione totale (in kPa o MPa), pressione di stagnazione (sempre in kPa o MPa), temperatura di stagnazione (in K), o velocità (in km/s).