Partition function (number theory): Difference between revisions

Content deleted Content added
Linas (talk | contribs)
m References: reformat references to match current WP style
Line 121:
 
==References==
* Tom M. Apostol, ''Modular functions and Dirichlet Series in Number Theory'' (1990), Springer-Verlag, New York. ISBN 0-387-97127-0 ''(See chapter 5 for a modern pedagogical intro to Rademacher's formula)''.
 
* Lehmer, [[D. H.; Lehmer]], ''On the remainder and convergence of the series for the partition function;'' Trans. Amer. Math. Soc. '''46'''(1939) pp 362-373. ''(Provides the main formula (no derivatives), remainder, and older form for A<sub>k</sub>(n).)''
:Trans. Amer. Math. Soc. 46(1939) 362-373.
:Main formula (no derivatives), remainder, but older form for A<sub>k</sub>(n).
 
* Gupta, Gwyther, Miller, ''Roy. Soc. Math. Tables, vol 4, Tables of partitions'', (1962;) ''(Has text, nearly complete bibliography, but they (and Abramowitz) missed the Selberg formula for A<sub>k</sub>(n) which is in Whiteman.)''
:Gupta, Gwyther, Miller.
:Has text, nearly complete bibliography,
:but they (and Abramowitz) missed the Selberg formula for A<sub>k</sub>(n) which is in:
 
* Whiteman, A. L.; Whiteman, ''A sum connected with the series for the partition function;'', Pacific Journal of Math. '''6'''(1956) pp 159-176. ''(Provides the Selberg formula. The older form is the finite Fourier expansion of Selberg.)''
:Pacific Journal of Math. 6(1956) 159-176.
:Selberg formula. The older form is the finite Fourier expansion of Selberg.
 
* [[Hans Rademacher's contributions are in: ]], ''Collected Papers of Hans Rademacher'', (1974) MIT Press; v II, p 100-107, 108-122, 460-475.
:MIT Press, 1974; v II, p 100-107, 108-122, 460-475.
 
==External links==