Continuous embedding: Difference between revisions

Content deleted Content added
m Definition: TeX --> text where practical
SmackBot (talk | contribs)
Standard headings &/or gen fixes.
Line 3:
==Definition==
 
Let ''X'' and ''Y'' be two normed vector spaces, with norms ||&middot;·||<sub>''X''</sub> and ||&middot;·||<sub>''Y''</sub> respectively, such that ''X''&nbsp;&sube;&nbsp;''Y''. If the [[identity function|inclusion map (identity function)]]
 
:<math>i : X \hookrightarrow Y : x \mapsto x</math>
 
is continuous, i.e. if there exists a constant ''C''&nbsp;&ge;&nbsp;0 such that
 
:<math>\| x \|_{Y} \leq C \| x \|_{X}</math>
Line 15:
==Examples==
 
* A finite-dimensional example of a continuous embedding is given by a natural embedding of the [[real line]] ''X''&nbsp;=&nbsp;'''R'' into the plane ''Y''&nbsp;=&nbsp;'''R'''<sup>2</sup>², where both spaces are given the Euclidean norm:
 
::<math>i : \mathbf{R} \to \mathbf{R}^{2} : x \mapsto (x, 0)</math>
Line 21:
:In this case, ||''x''||<sub>''X''</sub>&nbsp;=&nbsp;||''x''||<sub>''Y''</sub> for every real number ''X''. Clearly, the optimal choice of constant ''C'' is ''C''&nbsp;=&nbsp;1.
 
* An infinite-dimensional example of a continuous embedding is given by the [[Rellich-Kondrachov theorem]]: let &Omega;Ω&nbsp;&sube;&nbsp;'''R'''<sup>''n''</sup> be an [[open set|open]], [[bounded set|bounded]], [[Lipschitz ___domain]], and let 1&nbsp;&le;&nbsp;''p''&nbsp;&lt;&nbsp;''n''. Set
 
::<math>p^{*} = \frac{n p}{n - p}.</math>
Line 45:
* [[Compactly embedded]]
 
==ReferenceReferences==
 
* {{cite book | author=Rennardy, M., & Rogers, R.C. | title=An Introduction to Partial Differential Equations | publisher=Springer-Verlag, Berlin | year=1992 | id=ISBN 3-540-97952-2 }}