Content deleted Content added
m Updated categories |
→Network architecture: horrid typo |
||
Line 13:
:<math> \rho \big ( \left \Vert \mathbf{x} - \mathbf{c}_i \right \Vert \big ) = \exp \left[ -\beta \left \Vert \mathbf{x} - \mathbf{c}_i \right \Vert ^2 \right] </math>.
The Gaussian basis functions are local in the sense that
:<math>\lim_{||x|| \to \infty}\rho(\left \Vert \mathbf{x} - \mathbf{c}_i \right \Vert) = 0</math> i.e. RBF networks are [[universal approximator]]s on a compact subset of <math>\mathbb{R}^n</math>. This means that a RBF network with enough hidden neurons can approximate any continuous function with arbitrary precision.
|