Definite matrix: Difference between revisions

Content deleted Content added
connection with inner products
No edit summary
Line 20:
for all non-zero ''x'' in '''R'''<sup>''n''</sup> (or, equivalently, all non-zero ''x'' in '''C'''<sup>''n''</sup>). It is called '''positive semidefinite''' if
 
:<i>x</i><sup>*</sup><i> M x</i> >=&ge; 0
 
for all ''x'' in '''R'''<sup>''n''</sup> (or '''C'''<sup>''n''</sup>) and '''negative semidefinite''' if
 
:<i>x</i><sup>*</sup><i> M x</i> &le; 0
 
x</i> <= 0 for all ''x'' in '''R'''<sup>''n''</sup> (or '''C'''<sup>''n''</sup>).
 
A Hermitian matrix which is neither positive nor negative semidefinite is called '''indefinite'''.