Content deleted Content added
translated from german(!) entry |
m fixing spaces |
||
Line 1:
* <math>n1</math> = the number of distinct operators
*<math>
▲<math>N1</math> = the total number of operators
▲<math>N2</math> = the total number of operands
From these numbers, five measures are derived:
<math>N= N1 + N2 </math>▼
▲*Program length: <math>N= N1 + N2 \,</math>
*Program vocabulary: <math>n= n1 + n2 \,</math>
*Volume: <math>
*Difficulty : <math>D= (n1/2) * (N2/n2) \,</math>▼
*Effort: <math>E= D * V \,</math>▼
▲<math>D= (n1/2) * (N2/n2) </math>
▲<math>E= D * V </math>
* Number of the used different operators ((<math>n_1</math>) and operand (<math>n_2</math>), ), together the vocabulary size <math>n</math>.
* Number of the altogether used operators (<math>N_1</math>) and operand (<math>N_2</math>), together the implementation length <math>N</math>.
From this then the sizes of Halstead length become (<math>HL</math>) and Healstead volume (<math>HV=V</math>)
* <math>HL = n_1 \times \log_2 n_1 - n_2 \times \log_2 n_2</math>
* <math>HV = N \times \log_2 n</math>
From the base quantities one can compute different characteristic numbers, e.g.:
* <math>D = { n_1 \over 2 } \times { N_2 \over n_2 }</math>
From http://www.sei.cmu.edu/str/descriptions/halstead.html [http://www.sei.cmu.edu/str/descriptions/halstead.html] and the German wikipedia entry.
==see also==
|