Content deleted Content added
m sp: ket→key |
|||
Line 1:
The '''rotating wave approximation''' is an approximation used in [[atom optics]] and [[magnetic resonance]]. In this approximation, terms in a Hamiltonian which oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic resonance, and the intensity is low. Explicitly, terms in the Hamiltonians which oscillate with frequencies <math>\omega_L+\omega_0 </math> are neglected, while terms which oscillate with frequencies <math>\omega_L-\omega_0 </math> are kept, where <math> \omega_L </math> is the light frequency and <math> \omega_0</math> is a transition frequency.
The name of the approximation stems from the form of the Hamiltonian in the [[interaction picture]], as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system [[bra-ket notation|ket]], leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly-oscillating terms mentioned previously can be neglected. Since in some sense the interaction picture can be thought of as rotating with the system
==Mathematical formulation==
|