Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
The [[conditional quantum entropy]] is an [[entropy measure]] used in [[quantum information theory]]. It is a generalization of the [[conditional entropy]] of [[classical information theory]]. The conditional entropy is written <math>S(\rho|\sigma)</math>, or <math>H(\rho|\sigma)</math>, depending on the notation being used for the [[Quantum statistical mechanics#von Neumann entropy|von Neumann entropy]].
For the remainder of the article, we use the notation <math>S(\rho)</math> for the
==Definition==
Given two quantum states <math>\rho</math> and <math>\sigma</math>, the von Neumann entropies are <math>S(\rho)</math> and <math>S(\sigma)</math>. The
By analogy with the classical conditional entropy, one defines the conditional quantum entropy as <math>S(\rho|\sigma) \equiv S(\rho,\sigma) - S(\sigma)</math>.
|