Content deleted Content added
→Isotropic homogeneous media: use bulk and shear moduli as names, K as symbol for bulk modulus |
Reorder the sections, add elastostatic equation and solutions. (Note: Nothing removed!) |
||
Line 3:
== Basic equations ==
Linear elastodynamics is based on three [[tensor]] equations:
* dynamic equation (an expression of [[Newtons second law#Newton.27s second law: law of acceleration|Newton's second law]])
:<math>
\partial_j \sigma_{ij}
</math>
* [[constitutive equation]] (''anisotropic [[Hooke's law]]'')
Line 27 ⟶ 28:
The elastostatic equations are given by setting <math>\partial_t</math> to zero in the dynamic equation. The elastostatic equations are shown in their full form on the [[3-D elasticity]] entry.
== Isotropic homogeneous media ==
In [[Hooke's Law#Isotropic materials|isotropic]] media, the [[elasticity tensor]] has the form
:<math> C_{ijkl}
= K \, \delta_{ij}\, \delta_{kl}
+\mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}-\frac{2}{3}\, \delta_{ij}\,\delta_{kl})
</math> where <math>K</math> is the [[bulk modulus]] (or incompressibility), and <math>\mu</math> is the [[shear modulus]] (or rigidity), two [[elastic moduli]]. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the three basic equations can be combined to form the '''elastodynamic equation''':
:<math>
\mu\partial_j\partial_j u_i+\frac{\mu}{1-2\nu}\partial_i\partial_ju_j+f_i=\rho\partial_{tt}u_i
\,\,\,\,\,\,\,\,\mathrm{or}\,\,\,\,\,\,\,\,
\mu\nabla^2\mathbf{u}+\frac{\mu}{1-2\nu}\nabla(\nabla\cdot\mathbf{u})+\mathbf{f}=\rho\frac{\partial^2\mathbf{u}}{\partial t^2}
</math>
and the constitutive equation may be written:
:<math>
\sigma_{ij}=\lambda\epsilon_{kk}\delta_{ij}+2\mu\epsilon_{ij}\,
</math>
==Elastostatics - the elastostatic equation ==
If we assume that a steady state has been achieved, in which there is no time dependence to any of the quantities involved, the elastodynamic equation becomes the '''elastostatic equation'''
:<math>
\mu\partial_j\partial_ju_i+\frac{\mu}{1-2\nu}\partial_i\partial_ju_j=-f_i
\,\,\,\,\,\,\,\,\mathrm{or}\,\,\,\,\,\,\,\,
\mu\nabla^2\mathbf{u}+\frac{\mu}{1-2\nu}\nabla(\nabla\cdot\mathbf{u})=-\mathbf{f}
</math>
=== Thomson's solution: point force at the origin of an infinite medium ===
The most important solution of this equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by [[William Thomson, 1st Baron Kelvin|William Thomson]] (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of [[Coulomb's law]] in [[electrostatics]]. A derivation is given in {{ref_harvard|L&LV7|Landau & Lifshitz § 8|}}. Defining
:<math>a=1-2\nu\,</math>
:<math>b=2(1-\nu)=a+1\,</math>
where <math>/nu</math> is Poisson's ratio, the solution may be expressed as <math>u_i=G_{ik}f_k</math> where <math>f_k</math> is the force vector being applied at the point, and <math>G_{ik}</math> is a tensor [[Green's function]] which may be written in [[Cartesian coordinates]] as:
:<math>G_{ik}=
\frac{1}{4\pi\mu r}\left[
\left(1-\frac{1}{2b}\right)\delta_{ik}+\frac{1}{2b}\frac{x_i x_k}{r^3}
\right]
</math>
It may be also compactly written as:
:<math>G_{ik}=
\frac{1}{4\pi\mu}\left[\frac{\delta_{ik}}{r}-\frac{1}{2b}\frac{\partial r^2}{\partial x_i\partial x_k}\right]
</math>
and it may be explicitly written as:
:<math>G_{ik}=\frac{1}{4\pi\mu r}\begin{bmatrix}
1-\frac{1}{2b}+\frac{1}{2b}\frac{x^2}{r^2} &
\frac{1}{2b}\frac{xy} {r^2} &
\frac{1}{2b}\frac{xz} {r^2} \\
\frac{1}{2b}\frac{yx} {r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{y^2}{r^2} &
\frac{1}{2b}\frac{yz} {r^2} \\
\frac{1}{2b}\frac{zx} {r^2} &
\frac{1}{2b}\frac{zy} {r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{z^2}{r^2}
\end{bmatrix}
</math>
In cylindrical coordinates (<math>\rho,\phi,z</math>) it may be written as:
:<math>G_{ik}=\frac{1}{4\pi \mu r}\begin{bmatrix}
1-\frac{1}{2b}\frac{z^2}{r^2}&0&\frac{1}{2b}\frac{\rho z}{r^2}\\
0&1-\frac{1}{2b}&0\\
\frac{1}{2b}\frac{z \rho}{r^2}&0&1-\frac{1}{2b}\frac{\rho^2}{r^2}
\end{bmatrix}
</math>
It is particularly helpful to write the displacement in cylindrical coordinates for a point force <math>F_z</math> directed along the z-axis. Defining <math>\hat{\mathbf{\rho}}</math> and <math>\hat{\mathbf{z}}</math> as unit vectors in the <math>\rho</math> and <math>z</math> directions respectively yields:
:<math>
\mathbf{u}=\frac{f_z}{4\pi\mu r}\left[\frac{1}{4(1-\nu)}\,\frac{\rho z}{r^2}\hat{\mathbf{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]
</math>
It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/r. There is also an additional ρ-directed component which will be zero when ν=1.
=== Boussinesq's solution - point force at the origin of an infinite isotropic half-space===
Another useful solution is that of a point force acting on the surface of an infinite half-space. It was derived by Boussinesq{{ref_harvard|Bou1885|Boussinesq 1885|}} and a derivation is given in {{ref_harvard|L&LV7|See Landau & Lifshitz § 8|}}. In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written as in Cartesian coordinates as:
:<math>G_{ik}=\frac{1}{4\pi\mu}\begin{bmatrix}
\frac{b}{r}+\frac{x^2}{r^3}-\frac{ax^2}{r(r+z)^2}+\frac{az}{r(r+z)} &
\frac{xy}{r^3}-\frac{axy}{r(r+z)^2}&
\frac{xz}{r^3}-\frac{ax}{r(r+z)}\\
\frac{yx}{r^3} -\frac{ayx}{r(r+z)^2}&
\frac{b}{r}+\frac{y^2}{r^3}-\frac{ay^2}{r(r+z)^2}+\frac{az}{r(r+z)} &
\frac{yz}{r^3} -\frac{ay}{r(r+z)}\\
\frac{zx}{r^3}+\frac{ax}{r(r+z)}&
\frac{zy}{r^3}+\frac{ay}{r(r+z)}&
\frac{b}{r}+\frac{z^2}{r^3}
\end{bmatrix}
</math>
Other solutions:
* Point force inside an infinite isotropic half-space {{ref_harvard|Min1885|Mindlin 1936|}}
* Contact of two elastic bodies {{ref_harvard|Hertz1882|Hertz 1882|}}
=== The biharmonic equation ===
The elastostatic equation may be written:
:<math>A_{ij}u_j=(\alpha^2-\beta^2)\partial_i\partial_ju_j+
Line 99 ⟶ 176:
or, in coordinate free notation <math>\nabla^4 \mathbf{u}=0</math> which is just the [[biharmonic equation]] in <math>\mathbf{u}</math>.
== Elastodynamics - The Wave equation ==
From the elastodynamic equation one gets the ''wave equation''
:<math> (\delta_{kl} \partial_{tt}-A_{kl}[\nabla]) \, u_l
= \frac{1}{\rho} f_k </math>
where
:<math> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j </math>
is the ''acoustic differential operator'', and <math> \delta_{kl}</math> is [[Kronecker delta]].
In [[Hooke's Law#Isotropic materials|isotropic]] media, the [[elasticity tensor]] has the form
:<math> C_{ijkl}
= K \, \delta_{ij}\, \delta_{kl}
+\mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}-\frac{2}{3}\, \delta_{ij}\,\delta_{kl})</math>
where
<math>K</math> is the [[bulk modulus]] (or incompressibility), and
<math>\mu</math> is the [[shear modulus]] (or rigidity), two [[elastic moduli]]. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the acoustic operator becomes:
:<math>A_{ij}[\nabla]=\alpha^2 \partial_i\partial_j+\beta^2(\partial_m\partial_m\delta_{ij}-\partial_i\partial_j)\,</math>
and the acoustic algebraic operator becomes
:<math>A_{ij}[\mathbf{k}]=\alpha^2 k_ik_j+\beta^2(k_mk_m\delta_{ij}-k_ik_j)\,</math>
where
:<math> \alpha^2=\left(K+\frac{4}{3}\mu\right)/\rho \qquad \beta^2=\mu/\rho </math>
are the [[eigenvalue]]s of <math>A[\hat{\mathbf{k}}]</math> with [[eigenvector]]s <math>\hat{\mathbf{u}}</math> parallel and orthogonal to the propagation direction <math>\hat{\mathbf{k}}</math>, respectively. In the seismological literature, the corresponding plane waves are called P-waves and S-waves (see [[Seismic wave]]).
=== Plane waves ===
A ''plane wave'' has the form
:<math> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}} </math>
with <math>\hat{\mathbf{u}}</math> of unit length.
It is a solution of the wave equation with zero forcing, if and only if
<math> \omega^2 </math> and <math>\hat{\mathbf{u}}</math> constitute an eigenvalue/eigenvector pair of the
''acoustic algebraic operator''
:<math> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j </math>
This ''propagation condition'' may be written as
:<math>A[\hat{\mathbf{k}}] \, \hat{\mathbf{u}}=c^2 \, \hat{\mathbf{u}}</math>
where
<math>\hat{\mathbf{k}} = \mathbf{k} / \sqrt{\mathbf{k}\cdot\mathbf{k}}</math>
denotes propagation direction
and <math>c=\omega/\sqrt{\mathbf{k}\cdot\mathbf{k}}</math> is phase velocity.
==See also==
Line 108 ⟶ 225:
== References ==
*Gurtin M. E., Introduction to Continuum Mechanics, Academic Press 1981
* [http://www.pma.caltech.edu/Courses/ph136/yr2002/chap10/0210.1.pdf Elastostatics (Kip Thorne)]
* {{note_label|L&LV7||}}{{cite book |title=Theory of Elasticity |edition=3rd Edition|last=Landau |first=L.D. |authorlink=Lev Landau |coauthors=[[Evgeny Lifshitz|Lifshitz, E. M.]] |year=1986 |publisher=Butterworth Heinemann |___location=Oxford, England |isbn=0-7506-2633-X }}
* {{note_label|Bou1885||}}{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |authorlink=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |___location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}
* {{note_label|Min1936||}}{{cite journal |last=Mindlin |first= R. D.|authorlink=Raymond D. Mindlin |year=1936|title=Force at a point in the interior of a semi-infinite solid |journal=Physics |volume=7|issue= |pages=195-202 |id= |url= |quote= }}
* {{note_label|Hertz1882||}}{{cite journal |last=Hertz |first= Heinrich|authorlink=Heinrich Hertz |year=1882|title=Contact between solid elastic bodies |journal=Journ. f'tir reine iind angewandte Math.|volume=92}}
[[Category:Solid mechanics]]
|