Angular velocity tensor: Difference between revisions

Content deleted Content added
No edit summary
Line 14:
-\omega_y(t) & \omega_x(t) & 0 \\
\end{pmatrix}</math>
 
==Coordinate-free description==
 
At a given time instance <math>t</math>, the angular velocity tensor is a linear map between the postition vectors <math> \mathbf{r}(t) </math>
and their velocity vectors <math> \mathbf{v}(t) </math> of a rigid body rotating around the origo:
 
:<math> \mathbf{v} = T\mathbf{r} </math>
 
where we omitted the <math>t</math> parameter, and regard <math> \mathbf{v} </math> and <math> \mathbf{r} </math> as elements of the same 3-dimensional [[vectorspace]] <math>V</math>.
 
The relation between this linear map and the angular velocity [[pseudovector]] <math>\omega</math> is the following.
 
Because of ''T'' is the derivative of an [[orthogonal transformation]], the
 
:<math>B(\mathbf{r},\mathbf{s}) = (T\mathbf{r},\mathbf{s})</math>
 
[[bilinear form]] is [[skew-symmetric]]. So we can apply the fact of [[exterior algebra]] that there is a unique [[linear form]] <math>L</math> on <math>\Lambda^2 V </math> that
 
:<math>L(\mathbf{r}\wedge \mathbf{s}) = B(\mathbf{r},\mathbf{s})</math> ,
 
where <math>\mathbf{r}\wedge \mathbf{s} \in \Lambda^2 V </math> is the [[wedge product]] of <math>\mathbf{r}</math> and <math>\mathbf{s}</math>.
 
Taking the [[dual vector]] ''L''* of ''L'' we get
 
:<math> (T\mathbf{r},\mathbf{s}) = (L^*,\mathbf{r}\wedge \mathbf{s}) </math>
 
Introducing <math> \omega := *L^* </math>, as the [[Hodge dual]] of ''L''* , and apply further Hodge dual identities we arrive at
 
:<math> (T\mathbf{r},\mathbf{s}) = * (*L^* \wedge \mathbf{r} \wedge \mathbf{s}) = * (\omega \wedge \mathbf{r} \wedge \mathbf{s}) = (*(\omega \wedge \mathbf{r} ),\mathbf{s}) = (\omega \times \mathbf{r},\mathbf{s}) </math>
 
where
:<math>\omega \times \mathbf{r} := *(\omega \wedge \mathbf{r} )</math>
 
by definition.
 
Because <math>\mathbf{s}</math> is an arbitrary vector, from the nondegenerate property of scalar pruduct follows
 
:<math> T\mathbf{r} = \omega \times \mathbf{r}</math>
 
 
== See also ==