Hyperbolic functions: Difference between revisions

Content deleted Content added
Icairns (talk | contribs)
Extend list of formulae for completeness
Icairns (talk | contribs)
add series definition section
Line 26:
:<math>\operatorname{csch}(x) = \frac{1}{\sinh(x)} = \frac {2} {e^x - e^{-x}} = \imath \csc(\imath x)</math>
::(''hyperbolic cosecant'', pronounced "cosheck" or "cosech")
 
==Series definition==
It is possible to express the above functions as series:
 
:<math>\sinh x = x + \frac {x^3} {3!} + \frac {x^5} {5!} + \frac {x^7} {7!} +\cdots = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}</math>
 
:<math>\cosh x = 1 + \frac {x^2} {2!} + \frac {x^4} {4!} + \frac {x^6} {6!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}</math>
 
:<math>\tanh x = x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = </math>
 
:<math>\coth x = </math>
 
:<math>\sech x = </math>
 
:<math>\csch x = </math>
 
where
 
:<math>B_n \,</math> is the nth [[Bernoulli number]]
:<math>E_n \,</math> is the nth [[Euler number]]
 
==Relationship to regular trigonometric functions==