Rotating-wave approximation: Difference between revisions

Content deleted Content added
Undid revision 175169234 by CmdrObot (talk)
Anaqreon (talk | contribs)
Line 90:
+\hbar\left(\tilde{\Omega}^*e^{-i\omega_Lt}+\Omega^*e^{i\omega_Lt}\right)|\text{g}\rangle\langle\text{e}|\right)
e^{-i\omega_0t|\text{e}\rangle\langle\text{e}|}\\
\end{align}</math>
&=-\hbar\left(\Omega e^{-i\omega_Lt}+\tilde{\Omega}e^{i\omega_Lt}\right)e^{i\omega_0t}|\text{e}\rangle\langle\text{g}|
 
Using a Taylor series expansion of the exponential,
<math>\begin{align}
e^{i\omega_0t|\text{e}\rangle\langle\text{e}|} = 1 + i\omega_0t|\text{e}\rangle\langle\text{e}| + \ldots
\end{align}</math>
 
and operating on <math>\begin{align}|\text{e}\rangle\langle\text{g}| ,
\end{align}</math>
 
<math>\begin{align}
e^{i\omega_0t|\text{e}\rangle\langle\text{e}|}|\text{e}\rangle\langle\text{g}| &= (1 + i\omega_0t|\text{e}\rangle\langle\text{e}| + \ldots)|\text{e}\rangle\langle\text{g}| \\
&= |\text{e}\rangle\langle\text{g}| + i\omega_0t|\text{e}\rangle\langle\text{g}| + \ldots \\
&= (1 + i\omega_0t + \ldots)|\text{e}\rangle\langle\text{g}| \\
&= e^{i\omega_0t}|\text{e}\rangle\langle\text{g}| , \\
\end{align}</math>
 
so the new Hamiltonian becomes
 
<math>\begin{align}
\bar{H}&=-\hbar\left(\Omega e^{-i\omega_Lt}+\tilde{\Omega}e^{i\omega_Lt}\right)e^{i\omega_0t}|\text{e}\rangle\langle\text{g}|
-\hbar\left(\tilde{\Omega}^*e^{-i\omega_Lt}+\Omega^*e^{i\omega_Lt}\right)|\text{g}\rangle\langle\text{e}|e^{-i\omega_0t} \\
&=-\hbar\left(\Omega e^{-i\Delta t}+\tilde{\Omega}e^{i(\omega_L+\omega_0)t}\right)|\text{e}\rangle\langle\text{g}|