Content deleted Content added
No edit summary |
No edit summary |
||
Line 2:
Rev., 43 (2001), pp. 235–286.</ref> (QEP)''', sometimes called a '''quadratic matrix equation''', is to find [[scalar]] [[eigenvalue]]s <math>\lambda\,</math>, left [[eigenvector]]s <math>y\,</math> and right eigenvectors <math>x\,</math> such that
:<math> Q(\lambda)x = 0\text{ and }y^\
where <math>Q(\lambda)=\lambda^2 A_2 + \lambda A_1 + A_0\,</math>, with matrix coefficients <math>A_2\,</math>, <math>A_1\,</math> and <math>A_0\,</math> that are of dimension <math>n\,</math>-by-<math>n\,</math>. There are <math>2n\,</math> eigenvalues that may be ''infinite'' or finite, and possibly zero. This is a special case of a [[nonlinear eigenproblem]].
|