Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 4:
Let the origin be an [[isolated critical point]] of the above system.
A [[function]] <math> V(x,y)</math> that is of class C<sup>1</sup> and satisfies V(0,0)=0 is called a '''Liapunov function''' if every [[open ball]] <math> B<sub>d<\math><\sub>(0,0) contains at least one [[point]] where <math> V>0.</math> If there happens to exist
<math> \displaystyle \dot{V}(x,y)=V_{x}(x,y)F(x,y)+V_{y}(x,y)G(x,y) </math>
|