Content deleted Content added
m revised category |
TeX improvements and corrections. PLEASE don't write "<" when you mean \langle. |
||
Line 9:
Baeurle 2007, Schmid 1998, Baer 1998), as well as in real-time
Feynman-path integral quantum dynamics (Makri 1987, Miller 2005).
== Sign problem of statistical field theories ==
Line 22 ⟶ 21:
physical property <math>A</math> can be expressed in the general form
(Baeurle 2003)
:<math>
\left[ \; \sigma \; \right] \; \rho \left[ \;
\sigma \; \right]}{\int D \sigma
\; \rho \left[ \; \sigma \; \right]},
</math>
where <math>D \sigma</math> represents the field integration measure and
<math>A \left[ \; \sigma \; \right]</math> the estimator belonging to the
Line 45 ⟶ 46:
<math>A</math> can then be calculated with a standard simulation approach,
like Metropolis Monte Carlo, by evaluating the following expression
:<math>
\int D \sigma \; A \left[ \; \sigma \; \right]
\; \frac{\rho \left[ \; \sigma \; \right]}{\rho^\text{ref}
\left[ \; \sigma \; \right]}
\; \rho^\text{ref} \left[ \; \sigma \; \right]}{
\int D \sigma \; \frac{\rho \left[ \; \sigma \; \right]}{\rho^\text{ref}
\left[ \; \sigma \; \right]} \; \rho^\text{ref} \left[ \; \sigma \; \right]}
= \frac{
\; \frac{\rho \left[ \; \sigma \; \right]}{\rho^\text{ref}
\left[ \; \sigma \; \right]} \
\left[ \; \sigma \; \right]} \
</math>
where the brackets <math>
with respect to the real and positive definite reference distribution
<math>\rho^\text{ref} \left[ \; \sigma \; \right]</math>. In practice, the
averages in the numerator and denominator are approximated by their
respective discrete sum (Baeurle 2003)
:<math>
\frac{\sum\limits_{i=1}^{\tau_{run}}
\; A \left[ \; \sigma_i \; \right] \; \frac{\rho
\left[ \; \sigma_i \; \right]}{\rho^\text{ref} \left[ \; \sigma_i \; \right]}}{
\sum\limits_{i=1}^{\tau_{run}} \; \frac{\rho \left[ \; \sigma_i \;
\right]}{\rho^\text{ref} \left[ \; \sigma_i \; \right]}},
</math>
where <math>\tau_\text{run}</math> defines the total number of simulation steps.
=== Choice of reference system and sign problem ===
A crucial issue for the effective evaluation of the ensemble average
<math>
minimizes the standard deviations of the averages of the numerator and
denominator, as well as is independent of the estimator
Line 83 ⟶ 88:
distribution is obtained through the application of the variational method
(Kieu 1994), which provides
:<math>
\rho^\text{ref} \left[ \; \sigma \; \right] = \frac{\left| \;
\rho \left[ \; \sigma \; \right] \; \right|}{\int D \sigma
\left| \; \rho \left[ \; \sigma \; \right] \; \right|},
Line 90 ⟶ 96:
with the optimal standard deviation for the denominator average
:<math>
\sigma \left(
\right] \
{\rm sign} \left[ \; \sigma \; \right] \
</math>
where
:<math>
\right] \
\left[ \; \sigma \; \right]}{\int D \sigma \; \left|
\; \rho \left[ \; \sigma \; \right] \; \right|}
</math>
is the average of the sign function. The sign problem now occurs when the average of the sign
:<math>
\right] \
</math>
which causes that, unless a huge number of configurations are sampled, the large statistical fluctuations of the quantity render the calculation meaningless.
== Methods for reducing the sign problem ==
|