Content deleted Content added
m →Identification of significant differential expression: Corrected spelling of "cutoff" |
m →Identification of significant differential expression: Hyphenated "p-value" |
||
Line 25:
==Identification of significant differential expression==
Many strategies exist to identify which array probes show an unusual level of over expression or under expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |author=Shi L, Reid LH, Jones WD, ''et al'' |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239}}</ref><ref>{{cite journal |author=Guo L, Lobenhofer EK, Wang C, ''et al'' |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=}}</ref>This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p
==Pattern recognition==
|