Content deleted Content added
m →References: authorlink |
cleaned up math notation |
||
Line 2:
==Construction==
Let ''m'' be an odd number, and ''n'' = 2<sup>''m''</sup>
The extended code contains the words (''X'', ''Y'') satisfying three conditions
# ''X'', ''Y'' each have even weight;
# <math>\sum_{x \in X} x = \sum_{y \in Y} y;</math>
# <math>\sum_{x \in x} x^3 + \left(\sum_{x \in X} x\right)^3 = \sum_{y \in Y} y^3.</math>
The Peparata code is obtained by deleting the position in ''X'' corresponding to 0 in GF(2<sup>''m''</sup>).
==Properties==
The Preparata code is of length 2<sup>''m''+1</sup>
When ''m'' = 3, the Preparata code of length 15 is also called the '''Nordstrom–Robinson code'''.
== References ==
* {{cite journal | author=F.P. Preparata | authorlink=Franco P. Preparata | title=A class of optimum nonlinear double-error-correcting codes | journal=Information and Control | volume=13 | year=1968 | pages=378–400 | doi=10.1016/S0019-9958(68)90874-7 }}
* {{cite book | author=J.H. van Lint | title=Introduction to Coding Theory | edition=2nd ed | publisher=Springer-Verlag | series=[[Graduate Texts in Mathematics|GTM]] | volume=86 | date=1992 | isbn=3-540-54894-7 | pages=111-113}}
[[Category:Error detection and correction]]
|