Content deleted Content added
+Source, completely additive examples |
=>...that devide+ME |
||
Line 12:
Arithmetic functions which are completely additive are:
* A contraction of the [[logarithm|logarithmic function]] on '''N'''.
* A function Ω(''n''), defined for every ''n'' ≥ 2 of total number of all primes, which devide given positive integer ''n''. We put also Ω(1) = 0. Some values:
::Ω(4) = 2
::Ω(27) = 3
::Ω(144) = Ω(2
::Ω(2,000) = Ω(2<sup>4</sup>) + Ω(5<sup>3</sup>) = 4 + 3 = 7
::Ω(2,001) = 3
::Ω(2,002) = 4
Line 29 ⟶ 30:
: ω(''n'') = ∑<sub>''p''|''n''</sub> 1(''n''),
for every positive integer ''n'', where sum runs over all different [[prime number|primes]] that
::ω(4) = 1
::ω(27) = 1
::ω(144) = ω(2<sup>4</sup>) + ω(3<sup>2
::ω(2,000) = ω(2<sup>4</sup>) + ω(5<sup>3</sup>) = 1 + 1 = 2
::ω(2,001) = 3
::ω(2,002) = 4
Line 48 ⟶ 50:
'''Sources:'''
# Janko Bračič, ''Kolobar aritmetičnih funkcij'' (''[[Ring]] of arithmetical functions''), (Obzornik mat, fiz. '''49''' (2002) 4, pp 97 - 108) <font color=darkblue> (MSC (2000) 11A25) </font>
|