Content deleted Content added
Juan Marquez (talk | contribs) +cats |
Jitse Niesen (talk | contribs) clean up |
||
Line 1:
In [[linear programming]], a '''Hilbert basis''' for a [[convex cone]] is a minimal set of integer vectors such that every integer vector in the convex cone is a [[linear combination]] of the vectors in the Hilbert basis with non-negative integer coefficients.
every integer vector in its
:<math>\{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1,\ldots,\lambda_n \geq 0, \lambda_1,\ldots,\lambda_n \mbox{ real}\}</math>
Line 8:
is also in its integer cone
:<math>\{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1,\ldots,\lambda_n \geq 0, \lambda_1,\ldots,\lambda_n \mbox{ integer}\}.</math>
== References ==
* {{Citation | last1=Bruns | first1=Winfried | last2=Gubeladze | first2=Joseph | last3=Henk | first3=Martin | last4=Martin | first4=Alexander | last5=Weismantel | first5=Robert | title=A counterexample to an integer analogue of Carathéodory's theorem | doi=10.1515/crll.1999.045 | year=1999 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=510 | pages=179–185}}.
* {{Citation | last1=Cook | first1=William John | last2=Fonlupt | first2=Jean | last3=Schrijver | first3=Alexander | title=An integer analogue of Carathéodory's theorem | doi=10.1016/0095-8956(86)90064-X | year=1986 | journal=Journal of Combinatorial Theory. Series B | issn=0095-8956 | volume=40 | issue=1 | pages=63–70}}.
* {{Citation | last1=Eisenbrand | first1=Friedrich | last2=Shmonin | first2=Gennady | title=Carathéodory bounds for integer cones | doi=10.1016/j.orl.2005.09.008 | year=2006 | journal=Operations Research Letters | issn=0167-6377 | volume=34 | issue=5 | pages=564–568}}.
[[Category:Mathematical optimization]]▼
[[Category:Operations research]]▼
▲[[Category:Mathematical optimization]]
▲{{maths-stub}}
▲[[Category:Operations research]]
|