Conversion between quaternions and Euler angles: Difference between revisions

Content deleted Content added
Icairns (talk | contribs)
Conversion: a -> arc
Icairns (talk | contribs)
Conversion: copyedit on angles
Line 35:
 
:<math> \mathbf{q} = \begin{bmatrix}
\cos_2cos (\phi /2) \cos_2cos (\theta /2) \cos_2cos (\psi /2) + \sin_2sin (\phi /2) \sin_2sin (\theta /2) \sin_2sin (\psi /2) \\
\sin_2sin (\phi /2) \cos_2cos (\theta /2) \cos_2cos (\psi /2) - \cos_2cos (\phi /2) \sin_2sin (\theta /2) \sin_2sin (\psi /2) \\
\cos_2cos (\phi /2) \sin_2sin (\theta /2) \cos_2cos (\psi /2) + \sin_2sin (\phi /2) \cos_2cos (\theta /2) \sin_2sin (\psi /2) \\
\cos_2cos (\phi /2) \cos_2cos (\theta /2) \sin_2sin (\psi /2) - \sin_2sin (\phi /2) \sin_2sin (\theta /2) \cos_2cos (\psi /2) \\
\end{bmatrix}</math>
 
For Euler angles we get:
where <math>\cos_2 \alpha \,</math> is a notational shortcut for <math>\cos \frac{\alpha}{2}</math>, and <math>\sin_2 \alpha \,</math> for <math>\sin \frac{\alpha}{2}</math>. And for Euler angles we get:
 
:<math>\begin{bmatrix}
Line 48:
\begin{bmatrix}
\mbox{arctan} \frac {2(q_0 q_1 + q_2 q_3)} {1 - 2(q_1^2 + q_2^2)} \\
\mbox{arcsin} (2(q_0 q_2 - q_3 q_1)) \\
\mbox{arctan} \frac {2(q_0 q_3 + q_1 q_2)} {1 - 2(q_2^2 + q_3^2)}
\end{bmatrix} </math>