Elliptical polarization: Difference between revisions

Content deleted Content added
Restore mention of chirality.
corrected formula for the aspect ratio. not sure what the formula for the orientation in an x-y plane is.
Line 26:
:<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>
 
is the [[Jones vector]] in the x-y plane. HereThe <math>axes of \thetathe ellipse have lengths </math> is an\sqrt{\tfrac{1 angle- thatsin(2\theta)cos(\alpha_x determines- the\alpha_y tilt+ ofpi/2)}{2}}, the ellipse and <math>\sqrt{\tfrac{1 + sin(2\theta)cos(\alpha_x - \alpha_y + pi/2)}{2}} </math> determines the aspect ratio of the ellipse. If <math> \alpha_x </math> and <math> \alpha_y </math> are equal the wave is [[linear polarization | linearly polarized]]. If they differ by <math>\pi/2\,</math> they are [[circular polarization | circularly polarized]].
 
==See also==