Elliptical polarization: Difference between revisions

Content deleted Content added
corrected formula for the aspect ratio. not sure what the formula for the orientation in an x-y plane is.
Mathematical description of elliptical polarization: Cleanup and request citation for new formulas.
Line 18:
is the [[angular frequency]] of the wave, and <math> c </math> is the [[speed of light]].
 
Here <math>\mid \mathbf{E} \mid</math> is the [[amplitude]] of the field and
Here
 
:<math> \mid \mathbf{E} \mid </math>
 
is the [[amplitude]] of the field and
 
:<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>
 
is the [[Jones vector]] in the x-y plane. The axes of the ellipse have lengths <math> \sqrt{\tfrac{1 - \sin(2\theta)\cos(\alpha_x - \alpha_y + \pi/2)}{2}},</math> and <math>\sqrt{\tfrac{1 + \sin(2\theta)\cos(\alpha_x - \alpha_y + \pi/2)}{2}} </math>.{{cn}} If <math> \alpha_x </math> and <math> \alpha_y </math> are equal the wave is [[linear polarization | linearly polarized]]. If they differ by <math>\pi/2\,</math> theythe arewave is [[circular polarization | circularly polarized]].
 
==See also==