Explicit formulae for L-functions: Difference between revisions

Content deleted Content added
statement
Line 8:
=
\sum_{p,m}\frac{\log(p)}{p^{m/2}} (F(\log(p^m)+F(-\log(p^m)) -\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi(t)\Psi(t)dt</math>
where
*&rho; runs over the non-trivial zeros of the zeta function
*''p'' runs over positive primes
*''m'' runs over positive integers
*''F'' is a smooth function all of whose derivatives are rapidly decreasing
*&psi; is a Fourier transform of ''F'': <math>\psi(t) = \int_{-\infty}^{\infty}F(x)e^{itx}dx</math>
*&Phi;(1/2 + it) = &phi;(t)
*&Psi;(t) = -log(&pi;) + Re(&psi;(1/4 + it/2)), where &psi; is the [[digamma function]] &Gamma;&prime;/&Gamma;
 
==Hilbert-Pólya conjecture==