Content deleted Content added
m Quick-adding category "Numerical integration (quadrature)"; removed {{uncategorized}} (using HotCat) |
No edit summary |
||
Line 1:
{{orphan|date=November 2008}}
In [[numerical analysis]], the '''Bulirsch-Stoer
==Underlying ideas==
Line 7:
The idea of Richardson extrapolation is to consider a numerical calculation whose accuracy depends on the used stepsize <math>h</math> as an (unknown) [[analytic function]] of the stepsize <math>h</math>, performing the numerical calculation with various values of <math>h</math>, fitting a (chosen) analytic function to the resulting points, and then evaluating the fitting function for <math>h = 0</math>, thus trying to approximate the result of the calculation with infinitely fine steps.
Bulirsch and Stoer recognized that using [[rational function
The modified midpoint method by itself is a second-order method, and therefore generally inferior to fourth-order methods like the [[Runge-Kutta methods|fourth-order Runge-Kutta method]]. However, it has the advantage of requiring only one derivative evaluation per substep (asymptotically for a large number of substeps), and, in addition, as discovered by Gragg, the error of a modified midpoint step of size
==References==
<references/>
* William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. ''[[Numerical Recipes|Numerical Recipes in C]]''. Cambridge University Press, 1988. (See chapter 15.)
|