Graph algebra: Difference between revisions

Content deleted Content added
mNo edit summary
3 references or sources added
Line 6:
 
Davey, B.A.; Idziak, P.M.; Lampe W.A.; & McNulty, G.F. (2000).
"Dualizability and graph algebras",. ''Discrete Math.'' '''214(1-3)''', 145-172.
 
Deli'c, D. (2001). "Finite bases for flat graph algebras".
''J.~Algebra'' '''246''', 453-469.
 
McNulty, G.F.; & Shallon, C.R. (1983). "Inherently nonfinitely based finite algebras". In ''Universal Algebra and Lattice Theory'' (Puebla, 1982), Springer, Berlin, 206-231.
Line 13 ⟶ 16:
Dekker, New York. ISBN: 0-8247-4708-9.
 
Kelarev, A.V.; & Sokratova, O.V. (2003). "On congruences of automata defined by directed graphs",. ''Theoretical Computer Science'' '''301''', 31-43.
 
Kiss, E.W.; P"oschel, R.; & Pr"ohle, P. (1990). "Subvarieties of varieties generated by graph algebras",. ''Acta Sci. Math. (Szeged)'' '''54(1-2)''', 57-75.
 
Lee, S.-M. (1988). "Graph algebras which admit only discrete topologies". ''Congr. Numer.'' '''64''', 147-156.
 
Lee, S.-M. (1991). "Simple graph algebras and simple rings".
Kiss, E.W.; P"oschel, R.; & Pr"ohle, P. (1990). "Subvarieties of varieties generated by graph algebras", ''Acta Sci. Math. (Szeged)'' '''54(1-2)''', 57-75.
''Southeast Asian Bull. Math.'' '''15(2)''', 117-121.