Integration using Euler's formula: Difference between revisions

Content deleted Content added
the sign was wrong, we get a minus sign upon multiplying with the conjugate
some cleanup; more is needed
Line 20:
Cosine is the real portion of a complex number written in cos x + i sin x form
 
: <math>\int e^x \cos x dx\, =dx</math>
 
: <math>=\int e^x \mathrm{Re}\left\{ \cos x + i\cdot \sin x \right\} \, dx</math>
 
: <math>\int e^x \mathrm{Re}\{ e^{ix} \} \, dx</math>
 
: <math>\mathrm{Re}\left\{ \int e^x e^{ix} \, dx \right}</math>
 
: <math>\mathrm{Re}\left\{ \int e^{(i+1)x} \, dx \right\}</math>
 
This calculation continues as:
 
: <math>=\mathrm{Re}\left\{ \frac{1}{1+i}\ e^{(1+i)x} \right\}</math>
 
: <math>=\mathrm{Re}\left\{ (\frac{1}{2}\ - i\frac{1}{2}\ )e^x(\cos x +i\sin x) \right\}</math>
 
=Re 1/2* exp(x)* cos(x)+1/2* i* exp(x)* sin(x)-1/2*i* exp(x)* cos(x)+1/2* exp(x)* sin(x)
 
=1/2 exp(x)* cos(x) + 1/2 exp(x)* sin(x)
 
=1/2 exp(x)*cos(x) + 1/2 exp(x)*sin(x)
[[Category:Integral calculus]]