Content deleted Content added
No edit summary |
|||
Line 31:
: <math>\begin{align}
F_n(\mathbb{C}^k) & \longrightarrow
(e_1,\ldots,e_n) & \longmapsto
\end{align}</math>
Line 43:
: <math>\pi_p(F_n(\mathbb{C}^k)) = \pi_p(F_{n-1}(\mathbb{C}^{k-1})) = \cdots = \pi_p(F_1(\mathbb{C}^{k+1-n})) = \pi_p(S^{k-n}).</math>
This last group is trivial for
: <math>EU(n)={\lim_{\rightarrow}}\;_{k\rightarrow\infty}F_n(\mathbb{C}^k)</math>
|