Content deleted Content added
m →Relative degree: Wikified neighborhood. |
m →Relative degree: Made polynomial explicit. |
||
Line 51:
:<math>L_{g}L_{f}^{r-1}h(x_0) \neq 0</math>
Considering this definition of relative degree in light of the expression of the time derivative of the output <math>y</math>, we can consider the relative degree of our system (1) and (2) to be the number of times we have to differentiate the output <math>y</math> before the input <math>u</math> appears. In an [[LTI system]], the relative degree is the difference between the degree of the transfer function's denominator polynomial (i.e., number of poles) and the degree of its numerator polynomial (i.e., number of zeros).
=== Linearization by feedback ===
|