Human processor model: Difference between revisions

Content deleted Content added
D6 (talk | contribs)
m fmt headline levels (to start with "==", WP Check Wikipedia check #7
Docu (talk | contribs)
m clean up, fmt headline levels (to start with "==", WP Check Wikipedia check #7 using AWB
Line 1:
'''Human processor model''' is a cognitive modeling method used to calculate how long it takes to perform a certain task. Other cognitive modeling methods include parallel design, [[GOMS]], and [[KLM (human-computer interaction)]]. Cognitive modeling methods are one way to evaluate the usability of a product. This method uses experimental times to calculate cognitive and motor processing time. The value of the human processor model is that it allows a system designer to predict the performance with respect to time it takes a person to complete a task without performing experiments. Other modeling methods include inspection methods, inquiry methods, prototyping methods, and testing methods.
 
The human processor model uses the cognitive, perceptual, and motor processors along with the visual image, working memory, and long term memory storages. A diagram is shown below. Each processor has a cycle time and each memory has a decay time. These values are also included below. By following the connections diagrammed below, along with the associated cycle or decay times, the time it takes a user to perform a certain task can be calculated. Studies into this field were initially done by Card, S.K., Moran T.P., & Newell, A. Current studies in the field include work to distinguish process times in older adults by Tiffany Jastrembski and Neil Charness (2007).
 
=== How To Calculate ===
The calculations depend on the ability to break down every step of a task into the basic process level. The more detailed the analysis the more accurate the model will be to predict human performance. The method for determining processes can be broken down into the following steps.
 
=== How To Calculate ===
The calculations depend on the ability to break down every step of a task into the basic process level. The more detailed the analysis the more accurate the model will be to predict human performance. The method for determining processes can be broken down into the following steps.
* Write out main steps based on: a working prototype, simulation, step by step walk-through of all steps
* Clearly identify the specific task and method to accomplish that task
Line 17 ⟶ 16:
 
[[Image:HumanProcessorModel.jpg]]
 
 
{| class="wikitable"
Line 65 ⟶ 63:
| 2.5-4.2 chunks
|-
| Decay half-life of working memory
| 7 sec
| 5-226 sec
Line 78 ⟶ 76:
|}
 
=== Potential Uses ===
Once complete, the calculations can then be used to determine the probability of a user remembering an item that may have been encountered in the process. The following formula can be used to find the probability: ''P = e''<sup>''-K*t''</sup> where ''K'' is the decay constant for the respective memory in question (working or long term) and ''t'' is the amount of time elapsed (with units corresponding to that of ''K''). The probability could then be used to determine whether or not a user would be likely to recall an important piece of information they were presented with while doing an activity.
 
It is important to deduce beforehand whether the user would be able to repeat the vital information throughout time ''t'', as this has a negative impact on the working memory if they cannot. For example, if a user is reading lines of text and is presented with an important phone number in that text, they may not be able to repeat the number if they have to continue to read. This would cause the user’s working memory’s decay time to be smaller, thus reducing their probability of recall.
Line 89 ⟶ 87:
 
== References ==
* Lui, Yili; Feyen, Robert; and Tsimhoni, Omer. ''Queueing Network-Model Human Processor(QN-MHP): A Computational Architecture for Multitask Performance in Human-Machine Systems.'' '''ACM Transactions on Computer-Human Interaction.''' Volume 13, Number 1, March 2006, pages 37-70.
* Card, S.K; Moran, T. P; and Newell, A. ''The Model Human Processor: An Engineering Model of Human Performance.'' In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), '''Handbook of Perception and Human Performance.''' Vol. 2: Cognitive Processes and Performance, 1986, pages 1–35.
* Jastrzembski, Tiffany; and Charness, Neil. ''The Model Human Processor and the Older Adult: Parameter Estimation and Validation within a Mobile Phone Task.'' '''Journal of Experimental Psychology: Applied.''' Volume 13, Number 4, 2007, pages 224-248.
 
[[Category:Human-computer interaction]]
 
{{comp-sci-stub}}