Robot: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Riga 39:
== Sviluppi futuri ==
 
Quando gli studiosi di robotica iniziarono i primi tentativi di imitare l'[[andatura]] di uomini e animali, scoprirono che era incredibilmente difficile; era richiesta una capacità di calcolo molto superiore a quella disponibile all'epoca. Così si diede enfasi ad altre aree di ricerca. Semplici robot con le ruote furono usati per condurre esperimenti su [[comportamento]], [[navigazione]], e [[studio del percorso]]. Quando gli ingegneri eranofurono pronti a tentare di far camminare di nuovo i robot, theyscelsero starteddi smallprovare withcon [[hexapodesapode|esapodi]]s ando otheraltre multi-leggedpiattaforme platforms.a più Thesezampe, robotssimili mimickedper insectsforma ande arthropodsmovimento inagli both[[insetti]] formed andagli function[[artropodi]]. Questa Thescelta trendha towardsportato thesea bodyrisultati typesdi offergrande immenseflessibilità flexibilityed andadattabilità provena adaptabilitydiversi toambienti. anyLa environment.maggiore stabilità With[[statica]] moredata thandalle fourquattro legs,o thesepiù robotszampe arerende [[staticallypiù stable]]facile whichil makeslavorare themcon easierloro. toSolo workin with.tempi molto Onlyrecenti recentlysi hassono progressfatti beenprogressi madeverso towardsrobot deambulanti [[bipedal locomotionbipedi]] in robots.
 
Un altro campo di grandi progressi è quello medico. Alcune società produttrici hanno ottenuto le necessarie autorizzazioni per poter far utilizzare i loro robot in operazioni chirurgiche dall'invasività minima. Un settore affine, quello dell'automazione dell'attività di [[laboratorio]] analitico, vede robot da banco impegnati nelle attività routinarie di incubazione, manipolazione di campioni ed analisi chimica e biochimica.
Recently, tremendous progress has been made in medical robotics, with two companies in particular, Computer Motion and Intuitive Surgical, receiving regulatory approval in North America, Europe and Asia for their robots to be used in minimal invasive surgical procedures. Laboratory automation is also a growing area. Here, benchtop robots are used to transport biological or chemical samples between instruments such as incubators, liquid handlers and readers. Other places where robots are likely to replace human labour are in [[deep-sea exploration]] and space exploration. For these tasks, [[arthropod]] body types are generally preferred. [[Mark Tilden|Mark W. Tilden]] formerly of [[Los Alamos National Laboratory|Los Alamos National Laboratories]] specializes in cheap robots with bent but unjointed legs, while others seek to replicate the full jointed motion of crabs' legs.
 
Recently, tremendous progress has been made in medical robotics, with two companies in particular, Computer Motion and Intuitive Surgical, receiving regulatory approval in North America, Europe and Asia for their robots to be used in minimal invasive surgical procedures. Laboratory automation is also a growing area. Here, benchtop robots are used to transport biological or chemical samples between instruments such as incubators, liquid handlers and readers. //Other places where robots are likely to replace human labour are in [[deep-sea exploration]] and space exploration. For these tasks, [[arthropod]] body types are generally preferred. [[Mark Tilden|Mark W. Tilden]] formerly of [[Los Alamos National Laboratory|Los Alamos National Laboratories]] specializes in cheap robots with bent but unjointed legs, while others seek to replicate the full jointed motion of crabs' legs.
 
Experimental winged robots and other examples exploiting [[biomimicry]] are also in early development. So-called "[[nanomotor]]s" and "[[smart wire]]s" are expected to drastically simplify motive power, while in-flight stabilization seems likely to be improved by extremely small gyroscopes. A significant driver of this work is military research into spy technologies.