Fixed-point lemma for normal functions: Difference between revisions

Content deleted Content added
No edit summary
m Proof: +.
Line 18:
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {''f''(α<sub>''n''</sub>) : ''n'' &lt; ω}
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {α<sub>''n''+1</sub> : ''n'' &lt; ω}
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = β .
The last equality follows from the fact that the sequence &lt;α<sub>''n''</sub>&gt; increases.