Gauss–Legendre algorithm: Difference between revisions

Content deleted Content added
corrections and improvements in math notation style and punctuation; also used \varphi. See WP:MOSMATH.
Line 39:
 
If <math>c_0 = \sin\varphi\!</math>, <math>c_{i+1} = a_i - a_{i+1}\!</math>. then
 
:<math>\sum_{i=0}^{\infty} 2^{i-1} c_i^2 = 1 - {E(\sin\varphi)\over K(\sin\varphi)}\!</math>
 
where <math>E(k)\!</math> be the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]:
 
:<math>E(k) = \int_0^{\frac{\pi}{/2}}\sqrt {1-k^2 \sin^2\theta}\, d\theta.\!</math>
 
Gauss knew of both of these results.<ref name="brent">{{Citation
| last=Brent