Approximate Bayesian computation: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
m Citation maintenance. Added: issue, month, day. Formatted: volume, pages. You can use this bot yourself! Please report any bugs.
D6 (talk | contribs)
m fix unicode in templates (WikiProject Check Wikipedia check #16
Line 1:
'''Approximate Bayesian computation (ABC)''' is a family of computational techniques in [[Bayesian statistics]]. These simulation techniques operate on summary data (such as population mean, or variance) to make broad inferences with less computation than might be required if all available data were analyzed in detail. They are especially useful in situations where evaluation of the likelihood is computationally prohibitive, or whenever suitable likelihoods are not available.
 
ABC methods originated in population and evolutionary genetics <ref name=Pritchard1999>{{cite journal|last = Pritchard|first = J. K.|coauthors = Seielstad, M. T., Perez-Lezaun, A., and Feldman, M. T.|title = Population Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites|journal = Mol. Biol. Evol.|volume = 16|date = 1999|pages = 1791–1798}}</ref><ref name=Beaumont>{{cite journal|last = Beaumont|first = M. A.|coauthors = Zhang, W. and [[David Balding|Balding, D. J.]]|title = Approximate Bayesian Computation in Population Genetics|journal = Genetics|volume = 162|date = Dec 2002|pages = 2025–2035|url = http://www.genetics.org/cgi/content/abstract/162/4/2025|pmid = 12524368|issue = 4|month = Dec|day = 01}}</ref> but have recently also been introduced to the analysis of complex and stochastic [[dynamical systems]] <ref name=Toni2009>{{cite journal |author = Toni, T.; Welch, D.; Strelkowa, N.; Ipsen, A.; Stumpf, M.P.H. |year = 2009 |title = Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems | journal = Journal of the Royal Society Interface |volume = 6 |issue = 31 |pages = 187&ndash;202 |doi = 10.1098/​rsifrsif.2008.0172 |url=http://rsif.royalsocietypublishing.org/content/6/31/187.abstract}}</ref>.
 
In standard Bayesian inference the [[posterior distribution]] is given by