Universal approximation theorem: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 8:
<blockquote>
 
Let φ(·) be a nonconstant, bounded, and [[monotonic function|monotonically]]-increasing continuous function. Let ''I''<sub>''m''<sub>0</sub></sub> denote the ''m''<sub>0</sub>-dimensional unit hypercube [0,1]<sup>''m''<sub>0</sub></sup>. The space of continuous functions on ''I''<sub>''m''<sub>0</sub></sub> is denoted by ''C''(''I''<sub>''m''<sub>0</sub></sub>). Then, given any function ''f'' Э ''C''(''I''<sub>''m''<sub>0</sub></sub>) and є &gt; 0, there exist an integer ''m''<sub>1</sub> and sets of real constants ''α''<sub>''i''</sub>, ''b''<sub>''i''</sub> and ''w''<sub>''ij''</sub>, where ''i'' = 1, ..., ''m''<sub>1</sub> and ''j'' = 1, ..., ''m''<sub>0</sub> such that we may define:
 
: <math>