Content deleted Content added
No edit summary |
→Solution: It is clearly incorrect to italicize digits or parentheses in this situation; see WP:MOSMATH. Also, I'm using \varepsilon. |
||
Line 74:
:<math>Y_0(t,t_1) = A(t_1)\, e^{+it} + A^\ast(t_1)\, e^{-it},</math>
with ''A''(''t''<sub>1</sub>
:<math>\left[ -3\, A^2\, A^\ast - 2\, i\, \frac{dA}{dt_1} \right]\, e^{+it} - A^3\, e^{+3it} + c.c.</math>
where ''c.c.'' denotes the [[complex conjugate]] of the preceding terms. The occurrence of ''secular terms'' can be prevented by imposing on the – yet unknown – amplitude ''A''(''t''<sub>1</sub>
:<math>-3\, A^2\, A^\ast - 2\, i\, \frac{dA}{dt_1} = 0.</math>
Line 88:
As a result, the approximate solution by the multiple-scales analysis is
:<math>y(t) = \cos \left[ \left( 1 + \tfrac38\, \
using ''t''<sub>1</sub>
Higher-order solutions – using the method of multiple scales – require the introduction of additional slow scales, ''i.e.'': ''t''<sub>2</sub>
==See also==
|