Multiple-scale analysis: Difference between revisions

Content deleted Content added
No edit summary
Solution: It is clearly incorrect to italicize digits or parentheses in this situation; see WP:MOSMATH. Also, I'm using \varepsilon.
Line 74:
:<math>Y_0(t,t_1) = A(t_1)\, e^{+it} + A^\ast(t_1)\, e^{-it},</math>
 
with ''A''(''t''<sub>1</sub>'') a [[complex number|complex-valued]] [[amplitude]] to the zeroth-order solution ''Y''<sub>0</sub>''(''t'',&nbsp;''t''<sub>1</sub>'') and ''i''<sup>2</sup>''&nbsp;=&nbsp;−1. Now, in the first-order problem the forcing in the [[right hand side]] of the differential equation is
 
:<math>\left[ -3\, A^2\, A^\ast - 2\, i\, \frac{dA}{dt_1} \right]\, e^{+it} - A^3\, e^{+3it} + c.c.</math>
 
where ''c.c.'' denotes the [[complex conjugate]] of the preceding terms. The occurrence of ''secular terms'' can be prevented by imposing on the – yet unknown – amplitude ''A''(''t''<sub>1</sub>'') the ''solvability condition''
 
:<math>-3\, A^2\, A^\ast - 2\, i\, \frac{dA}{dt_1} = 0.</math>
Line 88:
As a result, the approximate solution by the multiple-scales analysis is
 
:<math>y(t) = \cos \left[ \left( 1 + \tfrac38\, \epsilonvarepsilon \right) t \right] + \mathcal{O}(\epsilonvarepsilon),</math>
 
using ''t''<sub>1</sub>''&nbsp;=&nbsp;''εt'' and valid for ''εt''&nbsp;=&nbsp;O(1). This agrees with the nonlinear [[frequency]] changes found by employing the [[Lindstedt–Poincaré method]].
 
Higher-order solutions – using the method of multiple scales – require the introduction of additional slow scales, ''i.e.'': ''t''<sub>2</sub>''&nbsp;=&nbsp;''ε''<sup>2</sup>''&nbsp;''t'', ''t''<sub>3</sub>''&nbsp;=&nbsp;''ε''<sup>3</sup>''&nbsp;''t'', etc. However, this introduces possible ambiguities in the perturbation series solution, which require a careful treatment (see {{harvnb|Kevorkian|Cole|1996}}; {{harvnb|Bender|Orszag|1999}}).<ref>Bender & Orszag (1999) p. 551.</ref>
 
==See also==