Content deleted Content added
←Created page with 'In probability theory and statistics, the '''Exponential-Logarithmic (EL) distribution''' is a family of lifetime distribution with<br> decreasing failure rate, def...' |
m Tag (and GF), added uncategorised tag, added wikify tag, added [[:Category:Orphaned using AWB |
||
Line 1:
{{orphan|date=August 2009}}
{{Wikify|date=August 2009}}
In probability theory and statistics, the '''Exponential-Logarithmic (EL) distribution'''
is a family of lifetime distribution with<br>
Line 8 ⟶ 12:
<CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
<TR style="TEXT-ALIGN: center">
<TD colSpan=2>Probability density function<BR>[[File:
<TR style="TEXT-ALIGN: center">
<TD colSpan=2>Hazard function<BR>[[File:
<TR vAlign=top>
<TH>Parameters</TH>
Line 49 ⟶ 53:
<TD> </TD></TR>
</TABLE>
[table of contents]
== Introduction ==
materials, etc., is of major importance in the biological and
engineering science. In general, life time of an device is
expected to exhibit decreasing failure rate (DFR) when its
behavior over time is characterized by 'work-hardening' (in
engineering term) or 'immunity' (in biological term).
Tahmasbi and Rezaei (2008)<ref>Tahmasbi, R., Rezaei, S., 2008, "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis, Vol. 52, pp. 3889-3901.</ref>
This model is obtained under the concept of population heterogeneity (through the process of
compounding).
== Properties of the distribution ==
=== Distribution ===
distribution is monotone decreasing with
modal value <math>\beta(1-p)(-p \ln p)^{-1}</math> at <math>x=0</math>.
<math>x</math> and tending to zero as <math>x\rightarrow \infty</math>. The EL leads to
exponential distribution with parameter <math>\beta</math>, as <math>p\rightarrow 1</math>.
<math>F_X(x;p,\beta)=1-\frac{\ln(1-(1-p) e^{-\beta x})}{\ln p},</math><br> and hence, the median is obtained by
<math>\frac{\ln(1+\sqrt{p})}{\beta}</math>.
=== Moments ===
direct integration and is given by <math>M_X(t)=E(e^{tX})=-\frac{\beta(1-p)}{\ln p (\beta-t)} hypergeom_{2,1}([1,\frac{\beta-t}{\beta}],[\frac{2\beta-t}{\beta}],1-p),</math><br>
where <math>hypergeom(.)</math> is hypergeometric function. This function
Line 92 ⟶ 98:
function is quickly evaluated and readily available in standard
software such as Maple.
The moments of <math>X</math> are determined from derivation of <math>M_X(t)</math>. For
<math>r\in\mathbb{N}</math>, raw moments are given by<br>
Line 100 ⟶ 105:
follows (Lewin, 1981) <ref>Lewin, L., 1981, Polylogarithms and Associated Functions, North
Holland, Amsterdam.</ref>:<br>
<math>polylog(a, z) =\sum_{k=1}^{\infty}\frac{z^k}{k^a}.</math
are given, respectively, by<br>
<math>E(X)=-\frac{polylog(2,1-p)}{\beta\ln p},</math
<math>Var(X)=-\frac{2 polylog(3,1-p)}{\beta^2\ln p}-\frac{ polylog^2(2,1-p)}{\beta^2\ln^2 p}.</math>
=== The survival, hazard and mean residual life functions ===
Line 115 ⟶ 120:
<math>h(x)=\frac{-\beta(1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}.</math>
The mean residual lifetime
of the EL distribution is given by<br/>
Line 123 ⟶ 127:
follows:<br/>
<math>dilog (a)=\int_1^a{\frac{\ln(x)}{1-x}dx}.</math>
=== Random number generation ===
Line 131 ⟶ 133:
parameters <math>p</math> and <math>\beta</math>:<br>
<math>X=\frac{1}{\beta}\ln(\frac{1-p}{1-p^U}).</math>
== Estimation of the parameters ==
To estimate the parametres, EM algorithm is used. This method is disscussed in Tahmasbi and Rezaei (2008). The EM iteration is given by
<br/>
<math>\beta^{(h+1)}=n\{\sum_{i=1}^n\frac{x_i}{1-(1-p^{(h)})e^{-\beta^{(h)}x_i}}\}^{-1},</math
<math>p^{(h+1)}=\frac{-n(1-p^{(h+1)})} { \ln( p^{(h+1)}) \sum_{i=1}^n
\{1-(1-p^{(h)})e^{-\beta^{(h)} x_i}\}^{-1}}.</math
==References==
{{Reflist}}
{{Uncategorized|date=August 2009}}
|