Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
Estimation of the parameters: more of that............
Line 138:
== Estimation of the parameters ==
To estimate the parameters, EM algorithm is used. This method is discussed in Tahmasbi and Rezaei (2008). The EM iteration is given by
<br/>
<math>\beta^{(h+1)}=n\{\sum_{i=1}^n\frac{x_i}{1-(1-p^{(h)})e^{-\beta^{(h)}x_i}}\}^{-1},</math>
 
: <math>p\beta^{(h+1)} = n \left( \sum_{i=1}^n\frac{x_i}{1-n(1-p^{(h+1)})} e^{ -\ln( pbeta^{(h+1)})x_i}} \sum_right)^{i=-1}^n,</math>
 
: <math>\betap^{(h+1)}=n\{\sum_{i=1}^n\frac{x_i}{1-n(1-p^{(h+1)})e^} {- \betaln( p^{(h+1)}x_i}}) \}^sum_{-i=1},</math>^n
\{1-(1-p^{(h)})e^{-\beta^{(h)} x_i}\}^{-1}}.</math>