Continuous mapping theorem: Difference between revisions

Content deleted Content added
m Convergence almost surely: change alignment in formula
Line 68:
at each point ''X(ω)'' where ''g(·)'' is continuous. Therefore
: <math>\begin{align}
& \operatorname{Pr}\Big(\lim_{n\to\infty}g(X_n) = g(X)\Big) \geq
&\geq \operatorname{Pr}\Big(\lim_{n\to\infty}g(X_n) = g(X),\ X_n\notin D_g\Big) \geq \\
&\geq \operatorname{Pr}\Big(\lim_{n\to\infty}X_n = X,\ X\notin D_g\Big) \geq\
&\geq \operatorname{Pr}\Big(\lim_{n\to\infty}X_n = X\Big) - \operatorname{Pr}(X\in D_g) = 1-0 = 1.
\end{align}</math>