Overfitting: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
mNessun oggetto della modifica |
||
Riga 5:
Il concetto di overfitting è molto importante anche nell'[[apprendimento automatico]] e nel [[data mining]]. Di solito un [[algoritmo]] di apprendimento viene ''allenato'' usando un certo insieme di esempi (il ''training set'' appunto), ad esempio situazioni tipo di cui è già noto il risultato che interessa prevedere (''output''). Si assume che l'algoritmo di apprendimento (il ''learner'') raggiungerà uno stato in cui sarà in grado di predire gli output per tutti gli altri esempi che ancora non ha visionato, cioè si assume che il modello di apprendimento sarà in grado di ''generalizzare''<!-- [[inductive bias]] da tradurre (limite strutturale? limite induttivo?) o lasciare in inglese? Vedi però [[bias (distorsione)]] -->. Tuttavia, soprattutto nei casi in cui l'apprendimento è stato effettuato troppo a lungo o dove c'era uno scarso numero di esempi di allenamento, il modello potrebbe adattarsi a caratteristiche che sono specifiche solo del training set, ma che non hanno riscontro nel resto dei casi; perciò, in presenza di overfitting, le prestazioni (cioè la capacità di adattarsi/prevedere) sui dati di allenamento aumenteranno, mentre le prestazioni sui dati non visionati saranno peggiori.<!-- inserire grafico overfitting -->
Sia nella statistica che nel machine learning, per evitare l'overfitting, è necessario attuare particolari tecniche, come la [[cross-validation]] e l'[[Arresto anticipato (statistica)|
{{Portale|matematica}}
|