Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
No edit summary
edit
Line 4:
In the lemniscatic case, the minimal half period <math>\omega_1</math> is real and equal to
 
:<math>\frac{\Gamma^2(\fractfrac{1}{4})}{4\sqrt{\pi}}</math>
 
where <math>\Gamma</math> is the [[Gamma function]]. The second smallest half period is pure imaginary
Line 12:
 
:<math>
e_1=\fractfrac{1}{2},\qquad
e_2=0,\qquad
e_3=-\fractfrac{1}{2}.
</math>