Progressive function: Difference between revisions

Content deleted Content added
m refine cat
closer to WP:MOS
Line 1:
In [[mathematics]], a '''progressive function''' ''f&fnof;'' &nbsp;&isin; &nbsp;''L''<sup>2</sup>('''R''') is calleda ''progressive'' [[if and only if]]function itswhose [[Fourier transform]] is supported by positive frequencies only:
 
:<math>\mathop{\rm supp}\hat{f} \subseteq \mathbb{R}_+.</math>.
 
It is called '''regressive''' if and only if the time reversed function ''f''(&minus;''t'') is progressive, or equivalently, if
 
:<math>\mathop{\rm supp}\hat{f} \subseteq \mathbb{R}_-.</math>.
 
The [[complex conjugate]] of a progressive function is regressive, and vice versa.
 
The space of progressive functions is sometimes denoted <math>H^2_+(R)</math>, which is known as the [[Hardy space]] of the upper half-plane. This is because a progressive function has the Fourier inversion formula
 
:<math>f(t) = \int_0^\infty e^{2\pi i st} \hat f(s)\ ds</math>
:<math>f(t) = \int_0^\infty e^{2\pi i st} \hat f(s)\, ds</math>

and hence extends to a [[holomorphic]] function on the [[upper half-plane]] <math>\{ t + iu: t, u \in R, u \geq 0 \}</math>
 
by the formula
 
:<math>f(t+iu) = \int_0^\infty e^{2\pi i s(t+iu)} \hat f(s)\ ds
:<math>f(t+iu) = \int_0^\infty e^{2\pi i st} e^{-2\pi sus(t+iu)} \hat f(s)\, ds.</math>
:<math>f(t) = \int_0^\infty e^{2\pi i st} e^{-2\pi su} \hat f(s)\, ds.</math>
 
Conversely, every holomorphic function on the upper half-plane which is uniformly square-integrable on every horizontal line
will arise in this manner.