Content deleted Content added
m remove Erik9bot category,outdated, tag and general fixes |
m →Intuitive meaning: spelling |
||
Line 68:
The catch is, the Hamiltonian flows on the constrained subspace depend on the gradient of the Hamiltonian there, not its value. But there's an easy way out of this.
Look at the [[orbit (group theory)|orbits]] of the constrained subspace under the action of the [[symplectic flow]]s generated by the ''f'''s. This gives a local [[foliation]] of the subspace because it satisfies [[integrability condition]]s ([[Frobenius theorem (differential topology)|Frobenius theorem]]). It turns out if we start with two different points on a same orbit on the constrained subspace and evolve both of them under two different Hamiltonians, respectively. which agree on the constrained subspace, then the time evolution of both points under their respective Hamiltonian flows will always lie in the same orbit at equal times. It also turns out if we have two smooth functions ''A''<sub>1</sub> and ''B''<sub>1</sub> which are constant over orbits at least on the constrained subspace (i.e. physical observables) (i.e. {A<sub>1</sub>,f}={B<sub>1</sub>,f}=0 over the constrained subspace)and another two A<sub>2</sub> and B<sub>2</sub> which are also constant over orbits such that A<sub>1</sub> and B<sub>1</sub> agrees with A<sub>2</sub> and B<sub>2</sub> respectively over the
In general, we{{Who}} can't rule out "[[ergodic]]" flows (which basically means that an orbit is dense in some open set), or "subergodic" flows (which an orbit dense in some submanifold of dimension greater than the orbit's dimension). We can't have [[self-intersecting]] orbits.
For most "practical" applications of first
In general, the quotient space is a bit "nasty" to work with when doing concrete calculations (not to mention nonlocal when working with [[diffeomorphism constraint]]s), so what is usually done instead is something similar. Note that the restricted submanifold is a [[bundle]] (but not a [[fiber bundle]] in general) over the quotient manifold. So, instead of working with the quotient manifold, we can work with a [[section]] of the bundle instead. This is called [[gauge fixing]].
Line 78:
The ''major'' problem is this bundle might not have a [[global section]] in general. This is where the "problem" of [[global anomaly|global anomalies]] comes in, for example. See [[Gribov ambiguity]]. This is a flaw in quantizing [[gauge theory|gauge theories]] which many physicists had overlooked.
What have been described are irreducible first
One way to get around this is this: For reducible constraints, we relax the condition on the right invertibility of Δ''f'' into this one: Any smooth function which vanishes at the zeros of ''f'' is the fiberwise contraction of ''f'' with (a non-unique) smooth section of a <math>\bar{V}</math>-vector bundle where <math>\bar{V}</math> is the [[dual vector space]] to the constraint vector space ''V''. This is called the ''regularity condition''.
|