Nonlinear complementarity problem: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 1:
In applied mathematics, a '''nonlinear complementarity problem (NCP)''' with respect to a mapping ''&fnof;''&nbsp;:&nbsp;'''R'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''R'''<sup>''n''</sup>, denoted by NCP''&fnof;'', is to find a vector ''x''&nbsp;&isin;&nbsp;'''R'''<sup>''n''</sup> such that
 
: <math>x \geq 0,\ f(x) \geq 0 </math>\text{ and <math>} x^{T}f(x)=0 \,</math>
 
where ''&fnof;''(''x'') is a smooth mapping.