Lloyd's algorithm: Difference between revisions

Content deleted Content added
m Undid revision 364075575 by Biker Biker (talk) The citation as I modified it is correct. Please look up the citation and you will see.
m References: templatize
Line 55:
 
==References==
*{{citation
 
| last1 = Deussen | first1 = Oliver
* Oliver Deussen, Stefan Hiller, Cornelius van Overveld, and Thomas Strothotte. ''Floating Points: A Method for Computing Stipple Drawings.'' Computer Graphics Forum, vol. 19, no. 3, (Proceedings of Eurographics), pp. 41-51, 2000.
| last2 = Hiller | first2 = Stefan
* Qiang Du, Maria Emelianenko, and Lili Ju. ''Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations.'' SIAM Journal on Numerical Analysis, vol. 44, pp. 102-119, 2006.
| last3 = van Overveld | first3 = Cornelius
* Qiang Du, Vance Faber, and Max Gunzburger. ''Centroidal Voronoi Tessellations: Applications and Algorithms.'' SIAM Review, vol. 41, no. 4, pp. 637-676, 1999.
| last4 = Strothotte | first4 = Thomas
* Stuart P. Lloyd. ''Least Squares Quantization in PCM.'' IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.
| doi = 10.1111/1467-8659.00396
* M. J. Sabin and R. M. Gray. ''Global Convergence and Empirical Consistency of the Generalized Lloyd Algorithm.'' [[IEEE Transactions on Information Theory]], vol. 32, no. 2, pp. 148-155, 1986.
| id = Proceedings of [[Eurographics]]
* Adrian Secord. ''Weighted Voronoi Stippling.'' Proceedings of the Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 37-43, 2002.
| issue = 3
| journal = Computer Graphics Forum
| page = 2000
| title = Floating points: a method for computing stipple drawings
| volume = 19}}.
*{{citation
| last1 = Du | first1 = Qiang
| last2 = Emelianenko | first2 = Maria
| last3 = Ju | first3 = Lili
| doi = 10.1137/040617364
| journal = SIAM Journal on Numerical Analysis
| pages = 102–119
* | Qiangtitle Du,= Maria Emelianenko, and Lili Ju. ''Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations.'' SIAM Journal on Numerical Analysis, vol. 44, pp. 102-119, 2006.
| volume = 44
| year = 2006}}.
*{{citation
| last1 = Du | first1 = Qiang
| last2 = Faber | first2 = Vance
| last3 = Gunzburger | first3 = Max
| doi = 10.1137/S0036144599352836
| issue = 4
| journal = SIAM Review
| pages = 637–676
| title = Centroidal Voronoi tessellations: applications and algorithms
| volume = 41
| year = 1999}}.
*{{citation
| last = Lloyd | first = Stuart P.
| doi = 10.1109/TIT.1982.1056489
| issue = 2
| journal = [[IEEE Transactions on Information Theory]]
| pages = 129–137
| title = Least squares quantization in PCM
| volume = 28
| year = 1982}}.
*{{citation
| last1 = Sabin | first1 = M. J.
| last2 = Gray | first2 = R. M.
| doi = 10.1109/TIT.1986.1057168
| issue = 2
| journal = [[IEEE Transactions on Information Theory]]
| pages = 148–155
| title = Global convergence and empirical consistency of the generalized Lloyd algorithm
| volume = 32
| year = 1986}}.
*{{citation
| last = Secord | first = Adrian
| contribution = Weighted Voronoi stippling
| doi = 10.1145/508530.508537
| pages = 37–43
| publisher = [[ACM SIGGRAPH]]
* | Adriantitle Secord. ''Weighted Voronoi Stippling.''= Proceedings of the Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 37-43, 2002.
| year = 2002}}.
 
[[Category:Data clustering algorithms]]