Integration using Euler's formula: Difference between revisions

Content deleted Content added
Simple example: Hence "simple example"
Line 21:
\frac{1}{4}\int \left( e^{2ix} + 2 + e^{-2ix} \right) dx
\,&=\, \frac{1}{4}\left(\frac{e^{2ix}}{2i} + 2x - \frac{e^{-2ix}}{2i}\right)+C \\[6pt]
&=\, \frac{1}{4}\left(2x + \sin 2x\right) +C.
\end{align}</math>
Of course, this example is so simple that it's not very difficult to handle with standard trigonometric identities.
 
==Second example==