Static forces and virtual-particle exchange: Difference between revisions

Content deleted Content added
The probability amplitude: spacetime metric
Gravitation: Darwin interaction
Line 314:
 
In the limit of zero [[photon]] mass, the Lagrangian reduces to the Lagrangian for [[electromagnetism]]. Therefore the energy reduces to the potential energy for the Coulomb force and the coefficients <math>a_1 </math> and <math>a_2 </math> are proportional to the electric charge. Unlike the Yukawa case, like bodies, in this electrostatic case, repel each other.
 
==Magnetostatics: The Darwin interaction==
 
A charged moving particle can generate a magnetic field that affects the motion of another charged particle. The static version of this effect is called the [[Darwin Lagrangian | Darwin interaction]]. To calculate this, consider the electrical currents in space generated by a moving charge
 
:<math>
\vec J_1\left( \vec x \right) = a_1 \vec v_1 \delta^3 \left( \vec x - \vec x_1 \right)
</math>
 
with a comparable expression for <math> \vec J_2 </math>.
 
The Fourier transform of this current is
 
:<math>
\vec J_1\left( \vec k \right) = a_1 \vec v_1 \exp\left( i \vec k \cdot \vec x_1 \right)
.</math>
 
The current can be decomposed into a transverse and and a longitudinal part (see [[Helmholtz decomposition]]).
 
:<math>
\vec J_1\left( \vec k \right) = a_1 \left[ 1 - \hat k \hat k \right ] \cdot \vec v_1 \exp\left( i \vec k \cdot \vec x_1 \right)
+ a_1 \left[ \hat k \hat k \right ] \cdot \vec v_1 \exp\left( i \vec k \cdot \vec x_1 \right)
.</math>
 
The hat indicates a [[unit vector]]. The last term disappears because
 
:<math>
\vec k \cdot \vec J = -k_0 J^0 \rightarrow 0
,</math>
 
which results from charge conservation. Here <math>k_0 </math> vanishes because we are considering static forces.
 
With the current in this form the energy of interaction can be written
 
:<math> E =
a_1 a_2\int {d^3k \over (2 \pi )^3 } \; \; D\left ( k \right )\mid_{k_0=0} \;
\vec v_1 \cdot \left[ 1 - \hat k \hat k \right ] \cdot \vec v_2 \; \exp\left ( i \vec k \cdot \left ( x_1 - x_2 \right ) \right )
</math>.
 
The propagator equation for the Proca Lagrangian is
 
:<math>
\eta_{\mu \nu} \left ( \partial^2 + m^2\right ) D\left ( x-y \right ) = \delta_{\mu \nu} \delta^4\left ( x-y \right )
.</math>.
 
The [[spacelike]] solution is
 
:<math>
D\left ( k \right )\mid_{k_0=0}\; = \;
-{1 \over \vec k^2 + m^2}
,</math>
 
which yields
 
:<math> E =
- a_1 a_2\int {d^3k \over (2 \pi )^3 } \; \;
{\vec v_1 \cdot \left[ 1 - \hat k \hat k \right ] \cdot \vec v_2 \over \vec k^2 + m^2 } \; \exp\left ( i \vec k \cdot \left ( x_1 - x_2 \right ) \right )
</math>
 
which evaluates to (see [[Common integrals in quantum field theory]])
 
:<math> E =
- {1\over 2} {a_1 a_2 \over 4 \pi r } e^{ - m r } \left\{
{2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right) - {2\over mr} \right \}
\vec v_1 \cdot \left[ 1 + {\hat r} {\hat r}\right]\cdot \vec v_2
</math>
 
which reduces to
 
:<math> E =
- {1\over 2} {a_1 a_2 \over 4 \pi r }
\vec v_1 \cdot \left[ 1 + {\hat r} {\hat r}\right]\cdot \vec v_2
</math>
 
in the limit of small m. The interaction energy is the negative of the interaction Lagrangian.
 
==Gravitation==