P-adic exponential function: Difference between revisions

Content deleted Content added
Definition of exp_p and log_p and basic properties
 
m a category..
Line 1:
{{DISPLAYTITLE:''p''-adic exponential function}}
 
In [[mathematics]], particularly [[P-adic analysis|''p''-adic analysis]], the '''''p''-adic exponential function''' is a ''p''-adic analogue of the usual [[exponential function]] on the [[complex numbers]].
 
==Definition==
 
The usual exponential function on '''C''' is defined by the infinite series
:<math>\exp(z)=\sum_{n=0}^\infty \frac{z^n}{n!}.</math>
Line 32 ⟶ 30:
 
==References==
 
* {{cite book | last=Cassels | first=J. W. S. | authorlink=J. W. S. Cassels | title=Local fields | series=[[London Mathematical Society|London Mathematical Society Student Texts]] | publisher=[[Cambridge University Press]] | year=1986 | isbn=0-521-31525-5 }}
 
==External links==
 
* {{planetmath reference|id=7000|title=p-adic exponential and p-adic logarithm}}
 
[[Category:Exponentials]]